ERdj5 sensitizes neuroblastoma cells to endoplasmic reticulum stress-induced apoptosis.
نویسندگان
چکیده
Down-regulation of the unfolded protein response (UPR) can be therapeutically valuable in cancer treatment, and endoplasmic reticulum (ER)-resident chaperone proteins may thus be targets for developing novel chemotherapeutic strategies. ERdj5 is a novel ER chaperone that regulates the ER-associated degradation of misfolded proteins through its associations with EDEM and the ER stress sensor BiP. To investigate whether ERdj5 can regulate ER stress signaling pathways, we exposed neuroblastoma cells overexpressing ERdj5 to ER stress inducers. ERdj5 promoted apoptosis in tunicamycin, thapsigargin, and bortezomib-treated cells. To provide further evidence that ERdj5 induces ER stress-regulated apoptosis, we targeted Bcl-2 to ER of ERdj5-overexpressing cells. Targeting the Bcl-2 to ER prevented the apoptosis induced by ER stress inducers but not by non-ER stress apoptotic stimuli, suggesting induction of ER stress-regulated apoptosis by ERdj5. ERdj5 enhanced apoptosis by abolishing the ER stress-induced phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) and the subsequent translational repression. ERdj5 was found to inhibit the eIF2alpha phosphorylation under ER stress through inactivating the pancreatic endoplasmic reticulum kinase. The compromised integrated stress response observed in ERdj5-overexpressing ER-stressed cells due to repressed eIF2alpha phosphorylation correlated with impaired neuroblastoma cell resistance under ER stress. These results demonstrate that ERdj5 decreases neuroblastoma cell survival by down-regulating the UPR, raising the possibility that this protein could be a target for anti-tumor approaches.
منابع مشابه
Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis.
Bortezomib (PS-341, Velcade) is a potent and selective inhibitor of the proteasome that is currently under investigation for the treatment of solid malignancies. We have shown previously that bortezomib has activity in pancreatic cancer models and that the drug induces endoplasmic reticulum (ER) stress but also suppresses the unfolded protein response (UPR). Because the UPR is an important cyto...
متن کاملAllantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions
Objective(s): Non-alcoholic steatohepatitis (NASH) is defined by steatosis and inflammation in the hepatocytes, which can progress to cirrhosis and possibly hepatocellular carcinoma. However, current treatments are not entirely effective. Allantoin is one of the principal compounds in many plants and an imidazoline I receptor agonist as well. Allantoin has positive eff...
متن کاملLow levels of Bax inhibitor-1 gene expression increase tunicamycin-induced apoptosis in human neuroblastoma SY5Y cells☆
A human SH-SY5Y neuroblastoma cell line with a low level of Bax inhibitor-1 expression was established by lentivirus-mediated RNA interference and fluorescence-activated cell sorting. In control SH-SY5Y cells, tunicamycin treatment induced endoplasmic reticulum stress-mediated apoptosis; however, after Bax inhibitor-1 gene knockdown, cell survival rates were significantly decreased and the degr...
متن کاملPositive contribution of ERdj5/JPDI to endoplasmic reticulum protein quality control in the salivary gland.
In eukaryotic cells, most membrane and secretory proteins are modified post-translationally in the ER (endoplasmic reticulum) for correct folding and assembly. Disulfide-bond formation is one of the important modifications affecting folding and is catalysed by the PDI (protein disulfide isomerase) family proteins. ERdj5 [also known as JPDI (J-domain-containing PDI-like protein)] is a member of ...
متن کاملThe secreted protein acidic and rich in cysteine (SPARC) induces endoplasmic reticulum stress leading to autophagy-mediated apoptosis in neuroblastoma
Our previous studies showed that overexpression of secreted protein acidic and rich in cysteine (SPARC) induced autophagy-mediated apoptosis in PNET cells. In the present study, we attempted to elucidate the molecular mechanisms and signaling cascades associated with SPARC overexpression in combination with radiation therapy that eventually leads to autophagy-mediated apoptosis in neuroblastoma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 284 10 شماره
صفحات -
تاریخ انتشار 2009